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It is shown that the answer to the question posed by A. Iu. Ishlinskii about 
whether the equilibrium position 5 = 0 of the system 2” 3: - @U (5, 
Q/as can be stable, if function U is harmonic with respect to E, is posit- 
ive. A symmetric time-periodic matrix A (t) whose trace is zero, such 
that the zero solution of system 5*’ = A (t)s is stable, is constructed. (We 
recall that the quadratic form (AZ, z) I 2 is harmonic then and only then, 
when the trace of A is zero). The configuration space dimension, i. e. 
the number of coordinates of vector x, is assumed greater than unity. 

Although the proposed here example is somewhat artificial, the method of its con- 
struction may prove to be of some interest in the investigation of Lie semigroups and 
in the analysis of the attainable set boundary in controllable systems. This method is 
presented here in Sect. 3, where the origin of this example formally defined in Sect. 1, 
is explained. The equilibrium stability of the obtained system with harmonic potent- 
ial is proved in Sect. 2. 

1. Definition of the example, Let iV and a bepositivenum- 
hers (below, N is selected fairly large and a fairly small). We specify the symm- 
etric matrix S of order n with zero trace so that the eigenvalues of matrix 5‘s are 
positive and different, Such matrix exists for n > 2. (It is possible, for instance, to 
take a diagonal matrix that has the indicated properties). We shall assume that n > 2. 

We subdivide segment [O, (4 I IV) + e) of the t -axis into six consecutive seg- 
ments whose length A appears fn the first row of the table below, and specify mat- 
rix A (t) which in each of these segments is equal to the constant matrix shown in 
the second row of the table (the segment left-hand ends, but not the right-hand ones 
are assumed to be part of each segment), 

A *IN al3 UN UN 2~13 $lN 
A (t) 3NSf2 0 - 3NSf2 3NSt4 0 - 3NS/4 

Having thus constructed A (t) on segment [O, Tf, T = (4 / N) + 8, we continue 
that function over the whole t -axis periodically with period 2’. Note that the 
trace of A (t) is zero for all t , so that the potential which corresponds to A (t) 
is harmonic. 

T h e o r e m 1. If we set e fairly small and N fairly large, the equilibrium 
position z = 0 of the equation 2’. = A (t)s with periodic coefficients is stable. 

Note that in the example defined in Theorem 1 the dependence of function A ft) 
on time is discontinuous, This defect can be easily eliminated by smoothing that 
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function. Let us fix function A (i.e. e and N in Theorem l), and complement 
its curve by segments that link the limit values to the left and right at points of dis- 

continuity. Let US consider the smooth periodic function A, whose curve lies entirely 
in the 6 -neighborhood of the supplemented curve of function A, and such that for 
any t the trace of A, (t) is zero. Such functions can be readily defined explicit- 

lY* 
T h e o r e m 2. If 6 is fairly small, the equilibrium position x = 0 of the 

equation x” = A * (t)z with periodic coefficients is stable. Here A * (t) = - 8.~7 
(x, t) I ar and the potential u is harmonic. 

2. P L o o f s, Let us examine the monodromy operator of the equation 2” = A 

(t)s which is equivalent to the system z’ = y, y’ = Ar with matrix 

Q=ili :I 

Hence the transformation of the phase space with matrix exp AQ corresponds 
to a time segment of length A along which A is constant, The monodromy operat- 

or of the considered equation is the product of six of such exponents that correspond 

to six segments of constant A in a period. 
First, let us consider segments of length 1 / N in each of which A is of the form 

NB, where B = 3S ! 2, - 3s ! 2, 3s / 4 and - 3S / 4 , respectively. Hence 

as N - oc the related operator of the phase space tra~formation in the time i f 1y 

has the following finite limit: 

Consequently the product of the three exponents that correspond to the first three 

segments has the following finite limit as N -?li 00 : 

CS E 0 Ill 3s 
exP -B E 

, B--p A= + 

Multiplication of the matrices yields 

II 

B E 
‘=pA -B2 __B II 

The product of transformations of the last three segments is of the same form, ex- 

cept that in this case A = 2s 13, and 3 = 3s ! 4. 

Finally, as N -, 00 the matrix of the monodmmy operator has the limit 

M (e) 2 exp I 3S/2n E 

I 
B==L,2 

-QSs[4n -3sJzn ’ 

When e - 0 we have 

M@)=E++Mo+..., M,= _Q&8 _-s 
I 

E 

We &au. prove that for fairly small e all eigenvalues of M @) are different with 
their modulus equal unity. 
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The formula for M (8) implies that for any fixed z 

li*,,, M (z t k)k = erp TM, (2.1) 

The transformation in the right-hand side has eigenvalues the modulus of all of 

which is equal unity, while being pairwise different (if z is not too large). In fact, 

this is the transformation in time T of the phase stream of the system 

2’ = sz + g, B’ = - 8/,S% - sy 

Eliminating y we obtain 2” = - i/,S%, i. e. the equation of small oscillations 
with positive potential energy (the eigenvalues of Sp are positive) and pairwise diff- 

erent natural frequences wj (the eigenvalues oj* of matrix S” are pairwise diff- 

erent). The eigenvalues of matrix exp ‘FM~ are equal, hence exp (&- ?roj). These 
numbers are pairwise different for small z. 

Note that all of the considered here differential equations are Hamiltonian equat- 

ions. Hence the operators of phase space transformation are simplicial. Simplicial 

operators whose eigenvalue moduli are all equal unity, are different from -I- 1 , and 

pairwise different, have the property of strong stability: they are stable together with 

all simplicial operators that are close to them (see [l] ). 

Thus the simplicial operator exp TM, is highly stable. If follows now from 

formula (2.1) that when k is fairly large the operator M (‘c ! k) is highly stable, 

which means that for a fairly small e the operator A4 (e) is highly stable. But then 
when N is fairly large but finite, the monodromy operator M (N, 8) close to M (e) 

is also stable. 

This proves Theorem 1. Theorem 2 follows from that the operator M (N, 8) is 

highly stable, and the monodromy operator for A, is fairly close to it. 

Remarks. 1”. The above reasoning provides also an example of the one- 
dimensional system 2” = A (t)s with periodic coefficients, which remains stable 
when the sign of the right-hand side is changed. Moreover, the function with such 

properties can be selected odd ( or even) with respect to t. Formulas in Sect. 1 in 
which S = 1 provide such an example with a discontinuous function A; the same 

properties can be obtained for a smooth function A by the smoothing procedure, 

2O. It is now possible to construct an example of stable equation with a potential 
that is harmonic in space and time periodic in the case of n = 2. For this it is nec- 

essary to consider a system which decomposes into the direct product zr” = A (+r, 

5s 
** = - A (t)% where function A is defined in Remark 1”. 

3. Lie semigroups and the attainability limit. 1’. 
This problem can be considered to be a particular case of the problem of Lie semi- 
groups generated by the.convex cones in Lie algebras, The Lie semigroup generated 

by a cone represents the closure of products of exponents of Lie algebra elements that 
lie in the cone. 

In the considered problem the Lie group is a group of simplicial matrices of order 
2n, and the cone directrix consists of matrices of the form 

0 E 

II II s 0 

where S is a symmetric matrix whose trace is zero, 



388 V.I. Amol’d 

It was shown above that for n > 3 the semigroup generated by such cone cont- 
ains only highly stable ~simplicial matrices, It would be interesting to try to classify 
the semigroups generated by convex cones belonging to classical Lie groups, The reas- 

oning presented below makes possible the first steps in that direction. The example in 

Sect. 1 has been formulated on that basis. 

2*. The problem of Lie semigroups is in turn a particular case of the problem of 

determination of the attainable set in controlled systems. The latter problem is gen- 
erally formulated as follows: in the space tangent to a manifold a subset (called the 

indicatrix of possible velocities) is specified at every point. It is required to determ- 
ine the set of points that can be reached from a given point in motion whose velocity 

at every instant of time belongs to the indicatrix, or to determine at least the closure 

of such set, 

One Of the ways of solving this problem consists of successive extension of the indi- 
catrix, which is carried out as foIIows. First, instead of the indicatrix we can consider 
the cone drawn over it, since only the direction of the curve reaching it is essential, 
not the velocity of motion along it. Second, the obtained cone can be closed, hoping 
that points attainable with the new cone will lie either inside or at the boundary of the 

set of points attainable prior to the closure. Third, the obtained closed cone can be 
extended to its convex shell, considering the possible mixed strategies (i. e. of motions 
with rapidly changing sections along which the velocity is selected differently). 

Let US assume that as the result of these operations we obtain such cones in the 

tangent spaces such that each of them contains in the tengent space some subspace. 
A fourth possibility of extending the cone-indicatrix exists in that case. Let us consid- 
er any vector field whose vector at each point lies in the considered subspace of the 

tangent space. 
Let us consider some point on the phase curve passing through the selected refer- 

ence point. Transformation invers to the transformation of the phase stream, which 
transforms the reference point to the end one, maps the end point indicatrix into the 

tangent space at the reference point. The shifted indicatrix can be joined to the ref- 

erence point indicatrix. 
It is actually possible to move for a certain time N over the vector field to the 

end point, then for some short time to follow the indicatrix of the end point, and then 
during time N move back along the phase curve of the vector field. As the result 

we shift from the reference point by a distance of order a by following the shifted 

indicatrix (within smalls of higher order with respect to a). 
The combination of all indicatrices shifted in this manner can be again subject- 

ed to convexification, closure, etc., until these operations no longer alter the indic- 

atrices. 

3O. The example in Sect. 1 was derived as follows, The initial indicatrix in the 

unit of a simplicial group consista of matrices of the form 

0 E 

II 0 A 0 

where A is any symmetric matrix with zero trace, At the remaining points of the 

group the indicatrix is obtained from the latter by a right-hand shift. 
Thus at each point the indicatrix is an affine plane, and the corresponding cone 
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is an open half-plane of the number of dimensions greater by one. Its closure repres- 
ents a closed half-plane, and the boundary (at point unity) consists of matrices of the 
form 0 0 II w A 0 

where A is a symmetric matrix with zero trace. 
In this way we have obtained a ~ght-inva~ant field of planes lying in the extend- 

ed indicatrices. The multip~cation of the group elements (from the right) by 

exp t 

specifies the phase stream, whose velocity vectors belong to the derived planes. Using 
the extension of the indicatrix by shifts along that field we join to the indicatrix in 
the unity all matrices of the form 

where A and B are symmetric matrices with zero trace, and the first matrix in the 
left-hand side is one of matrices of phase stream transformation, and the last one is 
its inverse matrix. 

We convexificate the set of all indicatrices shifted in this manner, and obtain the 
set of all matrices of the form 

where S and C are symmetric matrices with the trace of S equal zero and trC \( 
- tr S’. Among these matrices there are matrices of the form 

II s E 
-)$$a -_s ’ h>i 1 

to which corresponds the system I’ = Ss + y, II’ = - hS*x - Sy or the equation 
X *. = - (h - i)S% which defines stable oscillations. It is now not difficult to 

plot the path that leads from unity to a highly stable simplicial matrix, as was done 
in Sect. 1. 
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